Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society

The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients.

Methods:

The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve.

Results:

Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease.

Conclusion:

The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.

Genet Med 17 9, 689–701.

Similar content being viewed by others

Genetic testing for mitochondrial disease: the United Kingdom best practice guidelines

Article Open access 13 December 2022

Specialist multidisciplinary input maximises rare disease diagnoses from whole genome sequencing

Article Open access 07 November 2022

Deleterious heteroplasmic mitochondrial mutations are associated with an increased risk of overall and cancer-specific mortality

Article Open access 30 September 2023

Main

Mitochondrial diseases are one of the most common inborn errors of metabolism, with a conservative estimated prevalence of approximately 1:5,000. Primary mitochondrial diseases are defined as disorders impacting the structure or function of the mitochondria as a result of either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) mutations. 1

The field of mitochondrial medicine has only developed over the past 25 years, and clinicians have limited but growing evidence to formulate clinical decisions regarding diagnosis, treatment, and day-to-day patient management. These disorders still lack sufficiently sensitive and specific biomarkers. Most current diagnostic criteria were developed prior to the recent expansion in genetic knowledge that allows precise delineation of specific disease etiologies. Establishing a diagnosis often remains challenging, costly, and, at times, invasive.

There are no published consensus-based practice parameters that clinicians can utilize for initiating diagnosis or patient management. Most mitochondrial medicine specialists use a set of internally established guidelines based on theoretical concepts, limited published recommendations, and personal and anecdotal experience. As the Mitochondrial Medicine Society recently assessed, notable variability exists in the diagnostic approaches used, extent of testing sent, interpretation of test results, and evidence from which a diagnosis of mitochondrial disease is derived. 2 There are also inconsistencies in treatment and preventive care regimens.

Our purpose here was to review the literature on mitochondrial disease and, whenever possible, make consensus-based recommendations for the diagnosis and management of these patients. In the interest of brevity, limited background information about mitochondrial diseases, including testing, diagnostics, and treatment approaches is provided. We direct the reader who may be unfamiliar with these topics to several excellent reviews 3,4,5,6 and to the supplementary material accompanying this review for comprehensive topic-specific summaries prepared as part of this consensus development endeavor.

Methods

Writing Group members were appointed by the Mitochondrial Medicine Society’s Consensus Criteria Committee. The panel included 19 mitochondrial medicine specialists throughout North America with different areas of expertise, including neurologists, geneticists, clinical biochemical geneticists, anesthesiologists, and academic diagnostic laboratory directors. Clinician-led subgroups were formed to review relevant literature via a detailed PubMed search and summarize the evidence on selected topics in mitochondrial disease. Because some aspects of mitochondrial disease have been studied more thoroughly, these topics received more attention than others.

We expected that there would be variable but generally limited data available to establish evidence-based clinical practice protocols. Case reports and a limited number of case series are the primary evidence base available for the diagnosis and treatment of mitochondrial disease. Few studies were prospective. An initial approach to categorize the literature based on the Oxford Centre for Evidence-Based Medicine system showed that the majority of the literature met grade 3 or less (case–control, low-quality cohort studies, or expert opinion without explicit critical appraisal). Thus, the panel was asked to develop consensus recommendations using the Delphi method. Delphi is a consensus method developed to utilize expert opinion to make a knowledge-based decision when insufficient information is available. 7 It is increasingly used to develop consensus-based guidelines in medicine and rare diseases. 8,9 Expert panelists review the available knowledge and answer surveys concerning the issues in question. The survey is scored to determine the variation in opinion; if consensus is not reached, then these items are returned to the panelists for a second round, this time with the mean of responses from the first round available. A face-to-face meeting is then held to review areas of persistent disagreement.

The survey instrument, developed using QuestionPro software, generally comprised a five-point bipolar Likert scale; the potential responses were strongly disagree, disagree, neutral, agree, or strongly agree. Each subgroup was tasked with creating key clinical questions to address within its focus area. Each response was assigned a numerical score, such that “strongly disagree” was scored as 1, “disagree” as 2, “neutral” as 3, “agree” as 4, and “strongly agree” as 5. The mean consensus score for each item was then tallied. Items with a mean consensus score of >4 (agree/strongly agree) or

For items that did not meet consensus, a streamlined survey was returned to the panelists for a second round, with items marked with the group’s score so that each panelist was aware of the group mean when they re-scored the survey. After completion of a second set of surveys, a meeting of the panel was convened in conjunction with the 2014 annual meeting of the United Mitochondrial Disease Foundation Symposium in Pittsburgh, Pennsylvania, where items that did not reach consensus were discussed. Consensus was not reached for all items during the face-to-face meeting, especially on items that were considered to need further research.

To maintain brevity, the full data summary for each topic reviewed is not outlined below. All data summaries used by the working groups along with the initial composite consensus scores are available for review as an online supplement at bit.ly/mmsdatasummaries and provide a comprehensive and in-depth review of these topics.

Diagnosis

Biochemical testing in blood, urine, and spinal fluid

Most diagnostic algorithms recommend evaluation of selected mitochondrial biomarkers in blood, urine, and spinal fluid. These typically include measurements of lactate and pyruvate in plasma and cerebrospinal fluid (CSF), plasma, urine, and CSF amino acids, plasma acylcarnitines, and urine organic acids.

Lactate elevation occurs because the flux through glycolysis overwhelms the utilization of pyruvate in the mitochondria. Its usefulness is often limited by errors in sample collection and handling. 3 Venous plasma lactate levels can be spuriously elevated if a tourniquet is applied during the collection and/or if a child is struggling during the sampling. Markedly elevated plasma lactate (>3 mmol/l), in a properly collected sample, suggests the presence of mitochondrial dysfunction, which can be due either to primary mitochondrial disease or, secondarily, to organic acidemias, other inborn errors of metabolism, toxins, tissue ischemia, and certain other diseases.

Several studies have shown that in patients with primary mitochondrial disease, truly elevated lactate levels have sensitivity between 34 and 62% and specificity between 83 and 100%. 10,11,12 The blood lactate/pyruvate ratio is most reliable in differentiating electron transport chain (ETC) disease from disorders of pyruvate metabolism, but only when lactate levels are high. 13 The sensitivity of this ratio is 31%, with a specificity of 100%. 11

Elevated CSF lactate can be a helpful marker of mitochondrial disease in patients with associated neurologic symptoms. 14 Collection artifacts are less of a problem, although a variety of brain disorders, status epilepticus in particular, can transiently increase CSF lactate. 15 Surprisingly, urine lactate correlates less well with the presence of mitochondrial disease. 16

Pyruvate elevation is a useful biomarker for defects in the enzymes closely related to pyruvate metabolism, specifically pyruvate dehydrogenase and pyruvate carboxylase. 17 Blood pyruvate levels are also plagued by errors in collection and handling; furthermore, pyruvate is a very unstable compound. A single study has shown a sensitivity of 75% and specificity of 87.2% in patients with primary mitochondrial disease. 11

Quantitative amino acid analysis in blood or spinal fluid is commonly obtained when evaluating a patient with possible mitochondrial disease. Elevations in several amino acids occur due to the altered redox state created by respiratory chain dysfunction including alanine, glycine, proline, and threonine. 3 The exact sensitivity and specificity of alanine or the other amino acid elevations in patients with primary mitochondrial disease are not yet known. Elevations may be present in either blood or spinal fluid, and notable findings may only occur during times of clinical worsening. Urine amino acids are most commonly used to assess for mitochondrial disease–associated renal tubulopathy.

Carnitine serves as a mitochondrial shuttle for free fatty acids and a key acceptor of potentially toxic coenzyme A esters. It permits restoration of intramitochondrial coenzyme A and removal of esterified intermediates. Quantification of blood total and free carnitine levels, along with acylcarnitine profiling, permits identification of primary or secondary fatty-acid oxidation defects, as well as some primary amino and organic acidemias. Although acylcarnitine testing is suggested in a variety of mitochondrial reviews, 3 there is limited background literature to clearly support this recommendation. This testing is typically recommended because of the association of a potential secondary disturbance of fatty-acid oxidation in patients with mitochondrial disease and certain mitochondrial phenotypes overlapping other inborn errors of metabolism for which acylcarnitine analysis is diagnostic.

Urinary organic acids often show changes in mitochondrial disease patients. Elevations of malate and fumarate were noted to best correlate with mitochondrial disease in a retrospective analysis of samples from 67 mitochondrial disease patients compared with 21 patients with organic acidemias; other citric acid cycle intermediates and lactate correlated poorly. 16 Mild-to-moderate 3-methylglutaconic acid (3MG) elevation, dicarboxylic aciduria, 2-oxoadipic aciduria, 2-aminoadipic aciduria, and methylmalonic aciduria can all be seen in certain primary mitochondrial diseases. 3,18,19,20 Although urine organic acid may detect 3MG elevations, specific quantification of 3MG in blood and urine is more reliable, especially when 3MG levels are not markedly elevated. 21

Elevated creatine phosphokinase and uric acid are common in acute rhabdomyolysis in patients with fatty-acid oxidation disorders, and the elevations are caused by nucleic acid and nucleotide catabolism. 22 Although not extensively studied in primary mitochondrial disorders, patients with primary mitochondrial diseases may have muscle disease (especially with cytochrome b disease and thymidine kinase 2 deficiency), 23 and elevations can also occur with primary or secondary fatty-acid oxidation disorders. Hematologic abnormalities can be detected with a complete blood count. Aplastic, megaloblastic, and sideroblastic anemias, leukopenia, thrombocytopenia, and pancytopenia have been reported in some primary mitochondrial diseases. 24 Multiple primary mitochondrial diseases are associated with liver pathology based on mtDNA depletion and/or general liver dysfunction, and transaminases and albumin levels may help in diagnosis. New biomarkers of mitochondrial disease such as FGF21 and reduced glutathione await validation. 11,12,25,26

Cerebral folate deficiency is seen in a wide variety of neurologic and metabolic disorders including mitochondrial disease and is diagnosed via measurements of 5-methyltetrahydrofolate in CSF. 27 Cerebral folate deficiency was initially identified in mitochondrial disease in patients with Kearns–Sayre syndrome (KSS). 28,29 More recent case series in patients with KSS have further confirmed this finding. 30,31 Cerebral folate deficiency has been identified in patients with mtDNA deletions, 32 POLG disease, 33 and biochemically diagnosed complex I deficiency. 34 A primary cerebral folate disorder also exists, often due to mutations in the folate receptor 1 (FOLR1) gene encoding folate receptor alpha. 27

Consensus recommendations for testing blood, urine, and spinal fluid

DNA testing

Primary mitochondrial disorders are caused by mutations in the maternally inherited mtDNA or one of many nDNA genes. mtDNA genome sequencing and heteroplasmy analysis can now effectively be performed in blood, although it may be necessary to test other tissues in affected organs. Newer testing methodology allows for more accurate detection of low heteroplasmy in blood down to 5–10% 35 and 1–2%. 36,37 Overall, the advent of newer technologies that rely on massive parallel or next-generation sequencing (NGS) methodologies have emerged as the new gold standard methodology for mtDNA genome sequencing because they allow significantly improved reliability and sensitivity of mtDNA genome analyses for point mutations, low-level heteroplasmy, and deletions, thereby providing a single test to accurately diagnose mtDNA disorders. 38 This new approach may be considered as first-line testing for comprehensive analysis of the mitochondrial genome 39 in blood, urine, or tissue, depending on symptom presentation and sample availability. Identification of a causative mitochondrial disease mutation allows for families to end their diagnostic odyssey and receive appropriate genetic counseling, carrier testing, and selective prenatal diagnosis.

It may be necessary to preferentially test other tissues as part of the diagnostic evaluation of a patient for a suspected mitochondrial disorder. Urine is increasingly recognized as a useful specimen for mtDNA genome analysis, given the high content of mtDNA in renal epithelial cells. 40 This finding particularly applies to MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) syndrome and its most common mutation m.3243 A>G in MTTL1. 41,42 Skeletal muscle or liver are preferred tissue sources for mtDNA genome sequencing when available, given their high mtDNA content, reliance on mitochondrial respiration, and the possibility that they may harbor a tissue-specific mtDNA mutation that is simply not present in blood.

The mtDNA deletion and duplication syndromes manifest along a spectrum of three phenotypic presentations: KSS, chronic progressive external ophthalmoplegia, and Pearson syndrome. The most commonly used methods for detection of mtDNA deletions previously included Southern blot and long-range (deletion-specific) polymerase chain reaction analysis. However, Southern blot analysis lacks sufficient sensitivity to detect low levels of heteroplasmic deletions. In contrast, array comparative genome hybridization detects deletions and also estimates the deletion breakpoints and deletion heteroplasmy. 43,44 All of these methodologies are being replaced by NGS of the entire mitochondrial genome, 39,45 which provides sufficiently deep coverage uniformly across the mtDNA genome to sensitively detect and characterize either single or multiple deletions. 46 Deletions and duplications may only be detected in muscle or liver in many patients.

The mtDNA depletion syndromes are a genetically and clinically heterogeneous group of disorders characterized by a significant reduction in mtDNA copy number in affected tissues. Abnormalities in mtDNA biogenesis or maintenance underlie the pathophysiology of this class of mitochondrial disorders. They typically result from nDNA mutations in genes that function in mitochondrial deoxynucleotide synthesis or in mtDNA replication. Less frequently, mtDNA depletion can be caused by germline deletions/duplications of mtDNA segments. 47 Diagnosis therefore requires quantification of mtDNA content, typically in affected tissue, with identification of a significant decrease below the mean of normal age, gender, and tissue-specific control when normalized to nDNA tissue content. 48,49 mtDNA content is not assessed by NGS of the mtDNA genome and must be assayed by a separate quantitative real-time polymerase chain reaction.

More than 1,400 nuclear genes are either directly or indirectly involved in mitochondrial function. In addition to single-gene testing, there are many diagnostic laboratories that offer next-generation sequencing-based panels of multiple genes. Some companies offer panels with a small number of targeted genes, varying from a few to a dozen or so per mitochondrial disease phenotype (e.g., for mitochondrial depletion syndrome). Larger panels of more than 100, 400, or 1,000 nuclear genes are also available. Whole-exome sequencing became clinically available in 2011, and it is an increasingly common diagnostic tool utilized in patients with suspected mitochondrial disease. Numerous research reports describe the detection of novel pathogenic mutations in nuclear mitochondrial genes by whole-exome sequencing, but no clear evidence-based practice recommendation has been established related to the use of single-gene sequencing, nuclear gene panels, or whole-exome sequencing for diagnostic purposes in mitochondrial disease patients in clinical practice. 38,45,50,51,52,53,54,55,56,57

Consensus recommendations for DNA testing